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I. INTRODUCTION

It is well established experimentally that the solar wind near 1 AU

behaves in many respects as a compressible, supersonic, magnetoqasdynamic

fluid. In particular, magnetogasdynamic shock waves are observed. Some

of these shocks are undoubtedly caused by flares. Others are probably

not caused by flares. Ideally, this review should consider only the

flare-related shocks, but this is not possible because there is as yet

no unambiguous method for identifying that subset of shocks caused by

solar flares.

The problem of associating shocks with flares is discussed in

Section II. The observations of shock fronts and the flows behind

these fronts are discussed in Section III, and synoptic views of those

observations are described in the following section. Theoretical con-

cepts and models are summarized in Section V.

Several reviews concerning interplanetary shocks have recently

appeared (Hundhausen, 1972; Dryer, 1972a; Korobeinikov and Nikolayev,

1972; Burlaga, 1970; Burlaga, 1971). I refer the reader to them for

details and a complete list of references. This review discusses the

"big picture" with emphasis on the newest results and the key problems.

II. THE PROBLEM OF FLARE ASSOCIATION

How does one determine whether a given interplanetary shock is

caused by a flare? How does one determine which flare caused a given

flare-related shock? These key questions have not been answered, so

one must be very cautious and critical of the flare-associations

reported in the literature. This section discusses two criteria which

I
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have been used in making flare-shock associations (flare class, and

type II - type IV radio bursts), and additional criteria which should

be considered.

Flare Importance Class: The importance class of a flare is

defined by its corrected area as seen in Ha (see Table I and Smith

and Smith, 1963). It is widely believed that a shock is caused by the

most "important" flare occurring a few days before the time of the

shock front observation. Such a criterion is unsatisfactory for two

reasons: 1) it is based on an assumption about the propagation time,

which is one of the most important parameters that we would like to

determine, and 2) observations show that a class 2 or 3 flare is

neither a necessary nor a sufficient condition for an interplanetary

shock - many class 3 flares occur which are not followed by an

observable shock and conversely shocks have been observed when no

class 2 or class 3 flares could be seen.

Radio Bursts: Hundhausen (1972) suggested that type II - type IV

radio bursts could be used for identifying flare-related shocks and

the corresponding flares. Such bursts have also been used to identify

the cause of ionospheric disturbances, geomagnetic storms, and energetic

solar particles (Mitra, 1970; Kundu, 1965). However, Hundhausen found

that of the 22 shocks observed during the last half of 1965 and the

first half of 1967, only 60% were related to II - IV radio bursts.

Conversely, he found that nearly half (40%) of the II - IV bursts

during the first 6 months of 1967 were not followed by Interplanetary

shocks. I conclude from this that II - IV radio bursts are neither a

necessary nor sufficient criterion for making flare associations,
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although it is a step in the right direction. It is not known, however,

to what extent this result depends on the completeness and sensitivity

of the radio measurements. This problem merits further study.

Other Criteria: The above results indicate that we should search

for other criteria for making flare-shock associations. The problem of

flare associations has troubled workers in geomagnetism, aeronomy,

ionospheric physics, and cosmic ray physics, so we might learn some-

thing from them. In particular, I suggest that we should consider

such measurables as X-rays and U-V emissions, cm-emissions, cosmic

rays and energetic particles, the total optical emission, white

light (Smith and Smith, 1963) and the existence of a flash phase

(Athay and Moreton, 1961). The physical causes and source positions

of these emissions must be considered as well as their correlations

with interplanetary observations.

III. OBSERVATIONS

I shall distinguish between two parts of a shock wave - the dis-

continuous shock front and the flow behind this discontinuity. These

parts are sometimes loosely referred to as the "shock" and "post-

shock flow", respectively.
?

Interplanetary shock waves are very complicated. I shall attempt

to simplify their description by selecting only observations which are

general characteristics of shock waves, but one must not lose sight of

the complexity of real shock waves. Because we cannot unambiguously

separate flare associated shock waves from other types, the following

discussion concerns the general properties of all interplanetary
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shock waves.

Shock Fronts: Essentially, a shock front is a surface that moves

relative to the ambient medium in the direction of its normal at a

speed which is greater than the fast mode wave speed in that direction.

Locally, the physical characteristics of the shock front depend on the

shock normal and the shock "strength" (Mach number). From a global

point of view, the general shape and motion of this front are of basic

importance.

a. Local Shock Normals: There are now several methods for

computing the shock normal at a point on the shock front (e.g. see

Burlaga, 1971; Lepping and Argentiero, 1971; and Lepping, 1972) but to

obtain an accurate shock normal one must choose carefully among these

methods. One must be skeptical of normals which are quoted without

errors, since the errors might be very large. For example, independent

calculations of the normal of the July 8, 1966 shock range from 240

above the ecliptic plane to 700 below it (see Lepping 1971).

Figure 1 shows the distribution of shock normal directions for

6 typical shocks (Ogilvie and Burlaga, 1969). Similar results were

found by other workers (see Hundhausen, 1972, and Bavassano et al.,

1972). Note that most of the normals are close to the ecliptic

plane and tend to point radially away from the sun. However,

exceptional cases are sometimes observed (Hirshberg et al., 1970).

If the shocks were standing at the edges of stationary streams,

they would have nearly the same shape as the streams, i.e. they would

form an Archimedes spiral, and at 1 AU the normals would be z 45°
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with respect to the earth-sun line. The distributions of shock

normals show quite clearly that most shocks are not corotating. This

does not, however, imply that the shocks are all caused by flares.

b. Shock Strength: Perhaps the best measure of the local

shock front strength is the ratio of the shock front speed (relative to

the plasma) to the MHD fast-mode wave speed in the direction of the

shock normal. This is the fast mode Mach number, Mf. Unfortunately,

few authors compute Mf.

Since 8 z 1 near 1 AU (Burlaga and Ogilvie, 1970) Mf z Ms/l

where Ms is the ordinary gasdynamic Mach number. It is generally

found that Ms 3, so Mf < 2. Thus, interplanetary shocks near 1 AU

are intermediate strength shocks, and the simplifying assumptions

of strong shock theory are not valid for them.

c. Shock Front Shape: Lepping (1971) showed that the shock

normal for the July 8, 1966 event pointed 380 + 50 below the ecliptic

plane (Figure 2). This surprisingly large deviation from the radial

direction has a simple explanation. The shock was caused by a flare

high in the northern solar hemisphere (N 340). This flare association

seems reasonably certain since the flare (2B) was accompanied by X-ray

bursts, cm-wave bursts, II-IV type radio emission and energetic

(> 500 MeV) protons, -Zel 'do rich et al. (1971). Thus, the observed

shock normal is that which is expected if the shock surface were

hemispherical with a radius of curvature of z.6 AU (Figure 2).

Ivanov (1972) found that generally shock normals are < 40° below

the ecliptic if the corresponding flares are in the northern hemi-

sphere, and vice versa, suggesting again that the radius of curvature
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of the shock surface is less than, but on the order of 1 AU (e.g.

.5 AU). A similar conclusion was derived from geomagnetic data

(Hirshberg, 1968).

d. Shock Speeds: Local shock speeds at 1 AU range from

350 km/sec to 800 km/sec, the average being :500 km/sec

(Hundhausen, 1972). Note that the average shock speed is only z 25%

larger than the solar wind speed (- 400 km/sec) implying that the

shocks are essentially "carried" by the solar wind.

The average shock speed between the sun and the earth is given

by the transit time, T, - the time between generation by the flare and

arrival at the observer. The measurements of T are controversial

because of the problem of flare association. Hundhausen (1972) lists

transit times ranging from z40 hr to 100 hr, the median being

'55 hr and the corresponding mean speed being -600 km/sec. Akasofu

and Yoshida (1967) using geomagnetic data found transit times ranging

from ; 20 hr to 75 hr, the median being s 40 hr with a corresponding

mean speed of - 800 km/sec. Thus the local shock speed at 1 AU is

typically 7:60% to 80% of the mean speed between the sun and i AU.

Vernov et al. (1971) have suggested that shocks are decelerated to a

much greater extent.

Flows Behind the Shock Fronts: There is no really comprehensive

observational study of the flow behind a shock front. Rather, the

fashion has been to examine the behavior of just 1 or 2 parameters for

a collection of events. The following discussion is arranged accord-

ingly.
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a. Density and Speed Profiles: The basic dynamical proper-

ties of a shock wave are revealed by the density and speed profiles.

There is no general flow pattern behind shocks. Two relatively simple

extremes are shown in Figures 3 and 4. In Figure 3 the flow speed

and density increase for many hours after the shock front. There is

thus a large increase in energy flux behind the shock. By contrast,

Figure 4 shows a shock front behind which the density and flow speed

(and thus the energy flux) decrease monotonically. Hundhausen (1972)

refers to these two types of flows on the basis of rising and falling

energy flux as "R-type" and "F-type", respectively. Other designations

have also been suggested.

The variety of post-shock flows is illustrated by Figure 5 which

shows 8 shock fronts (dashed vertical lines) and the flows (n, v, Tp)

behind the shock fronts from Explorer 43 plasma data. Close inspection

reveals that every pattern is different. Each shock wave appears to be

unique. Note, however, that probably not all of these shock waves

were caused by flares.

Hundhausen (1972) computed the mass-and energy in excess of

ambient for 6 R-type and 6 F-type shock waves, on the assumption that

the area of the flare ejecta was 1/4 that of a sun-centered sphere.

(Table II). Note that both energy and mass are non-zero for both

types. The averages are a small fraction (< 10%) of the overall

efflux of the mass and energy in the coronal expansion, but are

comparable to the characteristic mass and energy of a flare

(Montgomery et al., 1972a).
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b. Temperature: Montgomery et al. (1972b) reported that

the lowest solar wind electron temperatures (- 5 x 104 OK, compared

to the average, (1.5 + .5) x 105 OK) are observed 4 to 18 hours after

the passage of a shock front. Conversely, they find that 80% of the

shock fronts observed between 1969 - 1971 were followed by depressions

in the electron temperatures. They suggest that the proton temper-

atures behave similarly.

c. Helium Enhancements: Several papers have reported a

high ratio of He to H densities (.15 to .3, compared to the average

of : .05) 5 to 15 hours after the passage of a shock front. Hirshberg

et al. (1972) reported that 75% of the large He enhancements

(He/H > 15%) in the period June 1965 - July 1967 were associated with

solar flares of class 2 or 3. The width of the He - rich region is

highly variable, (0.1 to .3) AU. Its average speed at 1 AU is 550

km/sec and is - 80% of its mean transit speed. There is no relation

between the size of the enhancement and the longitude of the flare.

The relation between the He enhancement and the speed profile is not

yet clear, although it is very impnortant

Most of the present He observations are very fragmentary. There

is a great need for continuous measurements of both the He and H

parameters.

d. Shape of Flare Ejecta: Long ago, Newton (1943) found

that the angular half width of nascent streams (Bartles, 1940) causing

0magnetic storms was < 45 . Yoshida and Akasofu (1967) arrived at a

similar result. It seems that few direct studies of the angular

extent of fast post shock flows have been made. One attempt has been



-9-

made by Lazarus et al. (1070). Such studies require at least 2

spacecraft. Hirshberg et al. (1972) found that the angular extent

of He enhancements was rather broad, extending from 65°W to 42°E.

e. Magnetic Field: Rather little has been published

concerning the measurements of the magnetic field configurations

behind shocks. Schatten and Schatten (1972) have statistically

anal&zed magnetic field data for 15 flare associated shock waves.

Their results, shown in Figure 6, indicate that a large increase

in the azimuthal component occurs, but the increase in the radial

component is relatively small, < 15%. They also note that the

field was highly disordered in the enhanced-field region. Un-

fortunately, the authors did not consider the plasma data, or

even the shock position. They suggest that the absence of an

enhanced radial field might indicate that reconnection might

generally occur, separating the magnetic bottle from the sun.

IV. SYNOPTIC VIEWS

Many attempts have been made to qualitatively synthesize the flare-

associated shock wave observations by drawing synoptic pictures. Two

different types of synposes are generally discussed - blast waves,

corresponding to shocks with decreasing n and v behind the front, and

driven shocks, corresponding to shock waves with n and v increasing

behind the front.

Blast waves. In the initial formulation of this model, a flare

was presumed to instantaneously emit a large burst of energy, but no

mass, which generated a shock front that propagated from the flare



site to 1 AU. Since energy is not added continually, the fluid

parameters increase at the shock front and then decay monotonically to

the pre-shock state. The field configurations in such a shock wave is

illustrated in Figure 7, based on a mathematical model of Parker (1963).

Note the spherical symmetry. Since the observations indicate that mass

probably is added, this simple synoptic picture must be modified. The

effect is probably the removal of the symmetry. More observations of

blast waves are much needed to test and develop the synoptic picture

and to compare with the theoretical models to be discussed later. Most

of the observations which have been published and described above refer

to driven shocks.

Driven shocks. Early synoptic pictures of driven shocks were

given by Obayashi (1967), Akasofu and Yoshida (1967), and Hirshberg

(1968). Here I shall discuss only the recent synoptic picture of

Hundhausen (1972), shown in Figure 8.

Ahead of the shock front one sees the radial wind and spiral

magnetic field. The shock front itself is an intermediate strength,

MHD shock which extends over a broad region, its radius of curvature

being Z.5 AU. Behind the front is ambient solar wind material which

has been heated and compressed by the shock front. The observations

of Schatten and Schatten (1972) suggest that the field lines should be

more compressed and disordered than shown in Fiqure 8. The helium-rich

shell is presumed to represent the arrival of new material from the

flare site, an accordance with a suqgestion by Lazarus and Binsack

(1967). It is not clear whether this He rich material is the

driver gas itself or is driven by the fast plasma behind it. The

- lo -
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results of Hirshberg et al. (1972) suggest that the He extends over a

broader extent than shown in Fiqure 8. Figure 8 shows a tangential

discontinuity separating the driven gas from the driving gas, but there

is no unambiguous observation of such a discontinuity, i.e. an isolate

discontinuity which clearly separates two distinct types of material

and for which all of the plasma and magnetic field parameters needed

tc identify a tangential discontinuity (Burlaga 1971) are available.

In general, the transition may be very complex with many discontinui-

ties present. The low temperatures behind the shock, reported by

Montgomery et al. (1972b) were attributed by them to the merging of

field lines. Their idea is that the question mark in Figure 8 should

be replaced by closed magnetic field lines, so that heat cannot be

readily conducted from the sun to the bottle; the plasma consequently

cools as it expands, giving the observed low temperatures.

Another synoptic view which summarizes the most recent measure-

ments is shown in Fig. 9. This, too, should be regarded as a working

model which will change when further observations become available.

V. THEORIES OF SHOCKS

Pa ic Physical Ideas - Parker was the first to consider inter-

planetary shocks mathematically. In his usual style, Parker (1963)

stripped the problem of all its complications' and considered

analytically two limiting cases, corresponding to instantaneous and

continuous input of energy. Assuming spherical symmetry, no magnetic

pressure, strong shocks, nealiqible wind speed, and a single fluid

solar wind with negligible pressure ahead of the shock, he obtained
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two types of shock wave profiles - blast waves and driven shocks,

corresponding to F-type and R-type shock waves, respectively, for

instantaneous and continuous energy input, respectively. As Parker

himself has often stressed, his calculations are simply illustrative,

intending to reveal the basic physics, and should not be expected to

correspond in detail to the observations. Most of the work during the

last 10 years has been devoted to examining the importance of the

factors that Parker neglected.

Mathematical Approaches - Two mathematical methods are used to

solve the relevant equations for shock waves - similarity methods (e.g.

Dryer, 197?a, and Korobeinikov and Nikolayev, 1972) and numerical

methods (Hundhausen, 1972). The similarity theories exploit internal

symmetries of the equations to provide insight concerning the general

properties of the solutions, but they are limited in their ability to

account for the variety of allowed initial conditions and boundary

conditions. The numerical methods, on the other hand, are not in

principle restricted by the initial and boundary conditions, but have

the limitation that each solution is unique. The two approaches are

thus complementary and both are valuable as long as one keeps the

limitations and assumptions of each in mind. In some cases, both

methods can be applied and they give equivalent results (Dryer, 1972b).

Most numerical models take the inner boundary for the calculation

well beyond the critical point - usually at - .1 AU, which is at the

edge of the solar envelope (the region between a few R0 and - 25 R
o
,

see Figure 10 and Burlaga, 1972). Figure 10 shows distance on a

logarithmic scale since the solar wind is not linear. Rather little
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is known about the behavior of shock waves in the large region between

a few solar radii and 25 R
o
. Thus, in their present state, the

numerical models explore "what would happen if" certain assumptions

about the shocks and wind at .1 AU are satisfied. The analytical

models usually specify conditions at the sun, but some assumptions in

these models are not valid below .1 AU.

Parametric Studies - Here I describe the recent work on the

effects of the parameters that Parker neglected. A quantity which is

very useful for comparing different models is the propagation time T -

the time between the generation of the shock and the arrival of the

shock at the observer. In general, this depends on the energy and

mass of the disturbance, the solar wind temperature, density and speed

profiles, the position (r,e,q) of the observer relative to the flare,

the gravitational acceleration of the sun, the solar radius and

rotation rate, the characteristic dimensions of the flare site, the

angular extent of the emissions, etc. (Korobeinikov, 1969).

For the simplest case of a blast wave in Parker's approximation,

T depends only on the position, r, of the observer and the energy, E,

of the disturbance,

T r3/ 2 (1)

a. Effect of Solar Wind Speed - Since the shock speed is

only 25% of the wind speed at 1 AU, the shock front is carried by

the solar wind, and it arrives at 1 AU much faster than one would

predict if the wind speed were zero. For example, a blast wave with
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E = lO32 ergs would arrive at 1 AU in 157 hrs, according to (1), for

VW = 0, but considering the typical solar wind speed, VW 400 km/sec,

one finds that T = 45 hrs (Hundhausen and Gentry, 1969).

b. Effect of Injection Tire - As mentioned earlier,

instantaneous injection times give rise to blast waves and infinite

injection times yield "driven shock" profiles. Density and speed

profiles for these two limits are shown in Figure l1a and 11c, from

Hundhausen and Gentry (1969). These are numerical solutions for

shocks moving into a fairly realistic ambient solar wind. An inter-

mediate case, corresponding to an injection time of t
i
= 2.1 hrs and

E = 1.6 x 1033 ergs is shown in Figure 11b. Unlike the limiting cases

in Figure lla and llc the shape of this profile will change qualitative-

ly as the shock wave moves outward, and ultimately (when t >> ti) the

profile will approach that of a blast wave.

The relation between the transit time to 1 AU and the ratio, a,

of the injection time to the transit time is shown in Figure 12 for

various energy inputs. If the injection time is very small compared

to the transit time (a << 1), T does not change appreciably with a,

because the shock wave appears like a blast wave. For relatively long

injection times, however, T increases rapidly with A. The shock wave

moves more slowly in this case because the energy which drives the

shock is necessarily released slowly when E is fixed and A is

relatively large.

The preceding discussion assumes just one characteristic time.

It is conceivable that the shock front near the sun is generated by a

process with characteristic time t1l, and that a subsequent flow is
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generated by another process (possibly not even in the flare site)

with characteristic time to > t1. This stream might steepen at 1 AU,

forming the observed shock, which would then not be causally related

to the shock observed near the sun.

c. Effect of Magnetic Field - Again assuming spherical

symmetry, Tam and Yousefian (1972) have investigated the effect of the

spiral interplanetary magnetic field on the propagation of a driven

shock (t
i

+ a) in the average solar wind. Computed transit times for

various initial shock speeds are shown in Figure 13 for the cases

B = 0 and B = 5y at 1 AU. For strong shocks, the effect of the

magnetic field is negligible. For weaker shocks, the effect of

magnetic field on the arrival time is found to be < 10%, but it is

not certain that the latter effect is real. In any case, the effect

of magnetic field on driven shocks is small, presumably because the

magnetic pressure B2/8v is much less than the streaming energy

PVw2/2. Since B2/8ir nk(T + Te) (Burlaga and Ogilvie 1969; NessW ~~p e

et al. 1971), this suggests that the ambient pressure, and in

particular the ambient temperature profile does not appreciably affect

shock waves between the sun and 1 AU. Ultimately, of course, the

magnetic and thermal pressures on the dense plug shown in Figure llc

will become significant, as discussed by Formissano and Chao (1972).

Although the magnetic field does not significantly affect the

development of the shock up to 1 AU, the shock does greatly alter the

field configuration. The effect of a blast wave on the direction of

B has already been discussed in relation to Figure 7 (Section III).

The effect on the magnitude of B is shown in Figure 14 from



- 16 -

Korobeinikov and Nikolayev (1972), where m is defined by the radial

variation of V
W
, V

W
= B r 2 . Relatively little is known about the

effects of driven shocks on B.

d. Non-Spherically Symmetric Shocks - DeYounn and Hund-

hausen (1971) numerically investigated the effect of droppinq the

assumption of spherical symmetry of the shock front. In particular,

they asked "Given a shock front confined to a narrow cone at .1 AU,

how does the shape of the surface change as the shock front moves

outward into the ambient solar wind?" The result of their calculations,

shown in Figure 15, is that the shock surface rapidly expands and

tends to become spherical at 1 AU, with a radius of curvature of

.5 AU on the axis of synmetry at 1 AU. This behavior is the result

of the narrow bottle-like shape of the shock at .1 AU: the pressure

increases everywhere across the shock surface which surrounds the

bottle, causing tne pressure inside the bottle to increase; this, in

turn, causes the bottle to expand in all directions, making the

hnbottle more nearly spherical.

There are two effects of the geometry on the propagation time.

First, a collimated shock arrives much later than a spherical shock

of the same energy (Figure 16), because the shock is weakened by the

transverse expansion. Seconds an observer off the axis of symmetry

(say 600) sees the shock later (10-15 hrs) than an observer on the

axis simply because the radius of curvature of the shock is less than

1 AU.

Figure 16 shows the transit time as a function of energy. The

transit time decreases with increasing E, as one expects, and it is
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longer for a slow slower wind than for a fast wind simply because the

shock is carried by the solar wind.

VI. IMPORTANT PROBLEMS

Although our knowledge of flare-associated shock waves is now

fairly broad, there remains much to be learned. The extensive studies

of the last several years must be followed by more intensive studies.

Some of the problems which I consider to be particularly important and

"ripe" are the following:

1) Establish criteria for determining whether a given shock is

caused by a flare, and for identifying the flare which produces a

given flare-associated shock.

2) Obtain complete descriptions of as many shock waves as

possible. By complete, I mean a thorough discussion of the flare and

all of the interplanetary measurements which I discussed in Section

III. Special attempts should be made to identify and study blast waves.

3) Theoretically, a number of idealized models remain to be

explored, e.g. non-spherically symmetric, driven shocks, with solar

rotation, and shocks with magnetic fields and heat conduction. The

behavior of a particles behind shock fronts must be examined quanti-

tatively. Realistic models incorporating all of the important

complications have yet to be constructed and compared with obser-

vations.
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4) We know very little about 'the behavior of shock waves on the

solar envelope. A major task of solar physicists and space physicists

is to bridge this chasm, the solar envelope, which separates them.
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Fig. 1. Distribution of shock normals. s is positive above the

ecliptic. 0 is measured from the earth-sun line, in the

ecliptic plane.

Fig. 2. The July 8, 1966 shock-flare position, shock normal, and

geometry of the shock front.

Fig. 3. Observations of an R-type shock wave.

Fig. 4. Observations of an F-type shock wave.

Fig. 5. The variety of post-shock flows.

Fig. 6. Magnetic field distributions in post flare flows.

Fig. 7. Magnetic field directions behind a blast wave.

Fig. 8. Hundhausen's synoptic view of a driven shock wave.

Fig. 9. A synoptic view of the observations discussed in Section III.

Fig. 10. The solar envelope.

Fig. 11. Theoretical shock wave profiles. Inner boundary at .1 AU,

ambient wind at 1 AU.

Fig. 12. Relation between transit time to 1 AU and A, the ratio of the

injection time to the transit time.

Fig. 13. Effect of magnetic field on transit time.

Fig. 14. Magnetic field intensity behind blast wave fronts. The

ambient solar wind speed is V = Ar- 2.

Fig. 15. Development of non-spherically symmetrical shock fronts.

Fig. 16. Transit time versus energy for spherical shocks (dashed

lines) and non-spherical shocks (solid curves).
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TABLE I

Importance
Class

Corrected Area
(in millionths) (in square degrees)

(of visible solar disc)

1 - <100 <2.06

1 100-250 2.06-5.15

2 250-600 5.15-12.4

3 600-1200 12.4-24.7
3 + >1200 >24.7

TABLE II

R- type

3.9 x 1016 gm

6.7 x 1031 erg

F - type

1.4 x 1016 gm

1.7 x 1031 erg

* U.S. GOVERNMENT PRINTING OFFICE: 1972-735-963/179
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